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1 Materials and Methods

1.1 Numerical Methods

1.1.1 Binary Networks

The results in Fig. 2 in the main text were obtained by numerical simulation of binary networks with
identical architecture to that studied analytically (see section 2.1), evolving according to the following
update rule (see, e.g., (1)): on each time stepdt, a neuroni out of the3N that compose the network
was chosen at random. If this neuron belonged to the externalpopulation (X), a random numberz was
generated and its activityσX

i was set to one ifz < mX
i and to zero otherwise. In all our simulations,

all external neurons had the same mean rate, i.e.,mX
i = mX for all i. If the neuroni to be updated

belonged to the recurrent network, its afferent synaptic current was calculated using the instantaneous
activity of all other cells in the network which projected toit. If the synaptic current was larger than the
firing threshold, its activityσα

i was set to one, and otherwise it was set to zero. Using this procedure,
each neuron is updated every3N iterations on average, which is defined to be equal to the neuronal
time constantτ . Thus, the resolution of the dynamics increases with the network size, i.e.,dt = τ/3N .
Since neurons from all three populations update their stateat this rate, the time constants of the three
populations is the same, i.e.,τE = τI = τX = τ . The biological interpretation ofτ is as the effective
time constant with which a neuron changes its firing activity. For concreteness, we assigned it a value of
τ = 10 ms throughout this work. In Fig. S4 the time constants of excitatory and inhibitory neurons were
different. This was implemented by choosing neurons for update from each population with different
probabilities. The firing activity (and synaptic currents)in the network was recorded with a sampling
rateSR. The sampling rate was set toSR = 1/τ when calculating instantaneous correlations and to
SR = 16/τ when calculating lagged correlations. In stationary conditions (Figs. 2 and S4), firing
correlationsr were calculated as the correlation coefficient of the corresponding strings of0’s and1’s for
the given neuronal pair (delayed in the case of lagged correlations). For the case of time-varying external
inputs (Fig. S5), the correlation coefficient was calculated between the same strings of0’s and1’s from
which the instantaneous time-varying average activity of the cells across trials had been subtracted.

Each dot (curve) in Fig. 2C (2F) is the average over 50 (10) simulations (length 200,000τ ) with
different realizations of the connectivity matrix. The parameters we used in all simulations werepαβ =

p = 0.2, mX = 0.1, θ = 1, jEE = 5/
√
N , jEI = −10/

√
N , jIE = 5/

√
N , jII = −9/

√
N ,

jIX = 4/
√
N , jEX = 5/

√
N . The synaptic parameters were chosen so that (apart from thescaling

factors) the effective size of a synaptic inputpjαβ would be the same as those used in (2). Networks
were simulated on two clusters of 28 nodes (http://www.rumba.rutgers.edu/ravana.php) and 19 nodes
running Linux, using custom written codes in C, C++.

1.1.2 Integrate-and-fire networks

Figure 1 of main text.We used a simple feed-forward network of current-based leaky integrate-and-fire
neurons (3, 4) to generate the data in this figure. The subthreshold membrane potential of each post-
synaptic neuron evolved according to
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τm
dV

dt
= −V + JE

NE
∑

i=1

sE
i (t) − JI

NI
∑

i=1

sI
i (t) (if V < θ)

whereτm = 10 ms. WhenV (t) reaches a firing thresholdθ = 20 mV the cell fires a spike and it is
reset to10 mV during an absolute refractory period of 2 ms. The synapticstrengthsJα (α = E, I) are
constants chosen to obtain EPSPs (IPSPs) of peak-amplitude0.75 (-0.75) mV. PSCs were modeled as a
kick followed by an exponential decay,

dsα
i

dt
= −sα

i /τs +
∑

tα
i

δ(t − tαi )

where the PSC decay timeτs = 5 ms,δ(. . .) is the Dirac delta function andtαi are the spike times from
pre-synaptic neuroni of populationα = E, I.

In Fig. 1B we simulated a pair of post-synaptic cells receiving only excitatory spike trains. Each
cell receivedNE = 250 independent Poisson with a constant rate of 5 spikes/s whichproduced approxi-
matelly the same output rate. A numberpNE of the inputs to each neuron were shared, andp was varied
in the range (0, 0.4).

In Fig. 1C, E-F, we fixed the fraction of shared input top = 0.2 and systematically varied the
correlation of the input spike trainsrin. Besides simulating the case with only excitatory inputs (top
trace) we also considered a case with both excitatory (NE = 250) and inhibitory (NI = 220) inputs
(bottom curve) with identical spiking statistics. The input firing rate was set to 20 spikes/s to produce an
output rate of 5 spikes/s whenrin = 0. Input spike correlations were generated by the common method
of themothertrain (5,6). We first generated a mother Poisson spike train of rateν/rin. Each pre-synaptic
train was a thinned version of the mother train, produced by randomly and independently keeping the
spikes of the mother train with probabilityrin. Finally, each spike in the pre-synaptic trains was jittered
by a random interval drawn from a two-tailed exponential distribution of zero mean and a time constant of
5 ms. Thus, all pre-synaptic trains were marginally Poisson, but had (approximately) exponential cross-
correlograms of width 10 ms and arearin. Output spike correlationsrout were computed numerically as
described in section 1.3.4. using a count windowT = 50 ms and a simulation lengthL = 10,000 s.

Figure 3 of main text. The results in Fig. 3 were obtained by numerical simulation of spiking
conductance-based integrate-and-fire networks (7–12) . Except for the sizes of each population, the
architecture of the spiking and binary networks was identical. The spiking network was composed of
NE =4000,NI =1000 andNX =4000 neurons. The membrane potentialV α

i of the i-th neuron (i =

1, . . . , Nα) from populationα = E, I evolves according to

Cm
dV α

i

dt
= −gL(V α

i − VL) + IαE
i (t) + IαI

i (t) + IαX
i (t) + Iapp

i (if V α
i < θ)

whereCm = 0.25 nF is the membrane capacitance,gL = 16.7 nS is the leak conductance (resting
membrane time constantCm/gL = 15 ms),VL = − 70 mV is the resting potential andθ = − 50 mV is
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the firing threshold. After a spike,V α
i was reset toVR = − 60 mV during an absolute refractory period

of 2 or 1 ms forE andI cells, respectively.
The synaptic currents to this neuronIαβ

i (β = E, I,X) are given by

Iαβ
i (t) = −





Nβ
∑

j=1

pαβ
ij g

αβ
ij s

αβ
ij (t)



 (V α
i − V β

rev)

whereV β
rev is the reversal potential of the corresponding current. We useV E

rev = V X
rev = 0 mV and

V I
rev = − 80 mV. The variablepαβ

ij is a binary random variable with probabilityp = 0.2 (except in Fig.
S7 D-F) of being equal to one which determines if cellj (in populationβ) projects to celli (in population
α). The variablegαβ

ij measures the strength of the synaptic conductance between these two cells. All
conductance strengths from cells in populationβ to cells in populationα are drawn from Gaussian
distributions of meangαβ and std. dev.0.5gαβ . We setgEE = 2.4 nS, gEI = 40 nS, gIE = 4.8,
nSgII = 40 nS,gEX = gIX = 5.4 nS. The quantitysαβ

ij (t) represents the instantaneous value of the
synaptic gating variable describing the fraction of open channels of the synapse from cellj to cell i. We
model unitary conductance changes in response to a pre-synaptic spike as a difference of exponentials:

τd
dsαβ

ij

dt
= xαβ

ij − sαβ
ij

τr
dxαβ

ij

dt
= τ̃

∑

tβj

δ(t− tβj − dαβ
ij ) − xαβ

ij

where tβj are the spike times of neuronj, dαβ
ij is the conduction delay between the two cells,τr =

1 ms andτd = 5 ms are the rise and decay times of the unitary conductance change (equal for all
synapses in the network, except for Fig. S7 G-I), and the factor τ̃ = 1 ms ensures that the area under
the unitary conductance is constant regardless of the rise and decay time-constants. Conduction delays
from excitatory (inhibitory) cells were drawn from a uniform distributiondαE

ij = [0.5 : 1.5] ms (dαI
ij =

[0.1 : 0.9] ms) independently for each synapse, sampled at a resolutionof 0.05 ms (13, 14). Neurons in
the external network had Poisson statistics with a constantrate of 2.5 spikes/s (except in Figs. S7 A-C
and S8).

In Fig. 3C-D we simulated an intracellular recording where constant currents were injected into cell
pairs in which the spiking mechanism had been disabled (15, 16). The range of current levelsIapp was
adjusted to isolate EPSPs, IPSPs, or different combinations of EPSPs and IPSPs. The current levels were
Iapp = −1.3,−0.65,−0.1, 0, 0.2, 0.74, 1.48, 2.22, 2.96, 3.7 nA. We computed cross-correlograms of the
voltages, and obtained for each condition an average over 450 cell pairs from ten different networks (50
s of simulated time) except the EPSP-IPSP condition (Fig. 3Cgold curve) were the number of pairs was
1000.

Numerical integration of the differential equations in thesimulations was performed using the second-
order Runge-Kutta algorithm with an iteration time-step of0.05 ms, using custom software written in C
and C++.
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1.2 Experimental Methods

Detailed descriptions of surgery and recording procedureshave been published previously (17–19).
Briefly, nine rats (Sprague-Dawley; 400 - 900 g) were anesthetized with urethane (1.3 - 1.6 g/kg body
weight) and ketamine (25-40 mg/kg) plus additional injections of urethane (0.2 g/kg) as needed. In some
experiments, cortical inactivation was induced by additional doses of ketamine (10 mg/kg, i.m.). Body
temperature was retained with a heating pad. Rats were placed in a stereotaxic frame or naso-orbital
restraint, and a window in the scalp was prepared over the somatosensory or auditory cortex. A sili-
con microelectrode (Neuronexus technologies, Ann Arbor MI) was attached to a micromanipulator and
moved gradually to its desired depth position. Probes consisted of eight linearly arranged shanks with
200µm separation between consecutive shanks (maximal separation was 1.4 mm). Each shank had eight
staggered recording sites (20µm separation). Extracellular signals were high-pass filtered (1 Hz) and
amplified (1,000 gain) by using a 64-channel amplifier (Sensorium, Charlotte, VT), and digitized at 25
kHz (DataMax System; RC Electronics, Santa Barbara, CA) or 20 kHz (United Electronic Industries,
Inc., Canton, MA). The location of the recording sites was estimated to be layer V by histological recon-
struction of the electrode tracks, electrode depth, and firing patterns (17). As we observed no significant
differences between the auditory and somatosensory data, these were pooled together in the analysis
presented in the main text. Data from several of these animals were used in previous studies (17,18). All
experiments were carried out in accordance with protocols approved by the Rutgers University Animal
Care and Use Committee.

1.3 Analysis Methods

1.3.1 Single-Unit Isolation

Units were isolated by a semiautomatic algorithm (http://klustakwik.sourceforge.net) followed by man-
ual clustering (20) (http://klusters.sourceforge.net). Single units selected for further analysis had less
than 10% contamination in an absolute refractory period of 2ms and fired more than 75 action potentials
in the recording session. Across the 18 recording sessions in 9 rats that we analyzed, an average of 69
(range [16:116], interquartile range [44:93]) simultaneously recorded single units met these conditions.

1.3.2 Classification of cortical state

Under urethane anesthesia, the pattern of cortical background activity spontaneously undergoes transi-
tions (21–24) between(i) periods of inactivation (InACT), characterized by global fluctuations in net-
work excitability (Up-states and Down-states) similar to those seen in slow-wave sleep, and(ii) periods
of activation (ACT), characterized by tonic activity more similar to REM sleep or attentive wakeful-
ness (25, 26). Separation into ACT and InACT periods was performed off-line on the basis of the mag-
nitude of the temporal fluctuations in multi-unit activity (MUA, defined as the merged spike trains of all
well-isolated units, Fig. S1A). Each recording session wasdivided into contiguous non-overlapping 10
s intervals and, for each interval, the coefficient of variation (CV) of the spike count of the MUA across
200 windows ofT = 50 ms was calculated (Fig. S1B). Although cortical activation or inactivation are
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associated with lower or higher CV values respectively, thedistinction between these two states is not
discrete, but rather varies along a continuum (27). To highlight the difference in the correlation structure
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Fig. S1: Classification of cortical state. (A)Evolution of the multi-unit spike count in an example experiment

from somatosensory cortex. Gray line is the spike count of the MUA in windows ofT = 50 ms and black dots

indicate the ocurrence of a Down-state (see section 1.3.3).(B) Coefficient of variation (CV) of the gray curve in

(A) computed in non-overlaping intervals of 10 s. The population recorded makes an abrupt transition from an

inactivated state (InACT) to an activated state (ACT) (red and blue bars indicate InACT and ACT periods chosen

for further analysis in this particular experiment).(C-D) Example local field potential (LFP) traces (top), rasters

(middle, cells sorted by rate) and MUA firing rates (bottom, normalized by number of neurons) for 10 s intervals

(signaled by the small boxes in (B)) of InACT (C) and ACT (D). During the InACT period, the LFP and MUA rate

show large-amplitude, low-frequency fluctuations which are absent during the ACT period.

of neural populations during cortical activation and inactivation, we identified, for each experiment,
ACT and InACT periods as those at the extremes of the activation-inactivation continuum, as assessed
by the value of the CV of the MUA spike count (Fig. S1B red and blue horizontal bars). Although the

6



characteristic CV values observed during ACT and InACT periods varied between experiments, all ACT
periods had an average CV of less than 0.5, and there was essentially no overlap between the distribution
of CVs in the ACT and InACT periods across all experiments. Every period of ACT or InACT had to
consist of at least nine consecutive 10 s intervals, and different periods of ACT or InACT in a single
experiment were merged. The mean duration of the merged ACT (InACT) period analyzed per recording
session was 610s (438s). While sensory stimuli were presented in some experiments, only unstimulated
epochs were used for the current analyses.

1.3.3 Detection of Up-states

To isolate intervals of sustained activity (Up-states) during periods of inactivation (InACT), we proceeded
by first identifying intervals of silence (Down-states) andthen removing them from the spike trains.Step
1.- From the MUA spike train, we computed the instantaneous population activitym(t) by convolution
with a Gaussian density of width 10 ms. We set a thresholdθ at 20% of the maximum ofm(t) for the
whole recording session, i.e.θ = 0.2max(m(t)). Step 2.-A Down-state was associated to every inter-
spike interval (ISI) in the MUA spike train longer than 50 ms.The Down-state began (ended) at the first
point in time left (right) of the center of the ISI wherem(t) = θ. Step 3.-Every interval in between two
Down-states was defined as an Up-state, unless the Up-state was shorter than 50 ms, in which case the
two surrounding Down-states were merged together.Step 4.-Time-intervals classified as Down-states
were removed from all spike spike trains and the correlationcoefficientr between the resulting spike
trains, composed only of Up-states, were calculated identically as during periods of activation (see next
section). Note that, beyond the requirement of a minimum duration of 50 ms, we did not impose any
condition of stationarity on Up-states (see, e.g., fluctuations during the third Up-state in Fig. 4C).

1.3.4 Quantifying Spiking Correlations

We quantified spiking correlations using generalized versions of the spike count correlation coefficient,
defined as follows. Time was first divided into bins of sizedt = 1 ms and the spike train from thei-th
neuron was represented by a binary sequencesi(t), equal to1 if there was a spike in(t, t + dt), and to
zero otherwise. The spike count in a window of sizeT is defined as the number of spikes in(t, t + T ),
which can be written as a convolution of the spike train with asquare kernel of lengthT . Our measure
of the local activity of celli at timet with resolutionT was also a convolution of the spike train with a
kernelKT (t)

ni(t;T ) = KT (t) ∗ si(t) =
∑

t′

KT (t′ − t)si(t
′) (1)

but we used normalized kernels (area under the kernel equal to one), so theni(t;T ) have units of firing
rate (spks/s). Since the units ofni(t;T ) do not affect any normalized measure of correlation, our results
would have been identical had we used spike counts (un-normalized kernels). We used a square kernel
(equal to1/T in (t, t+ T ) and to zero otherwise) when analyzing simulated spiking data (Figs. 1, 3, S6
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and S7) and a Gaussian kernel of standard deviationT when analyzingin vivodata (Fig. 4, S9 and S11).
The results did not qualitatively depend on the choice of kernel.

The statistical properties of spike trains simulated numerically are stationary. Thus, when analyzing
simulated data we used the standard expression for the correlation coefficientrij of the activity of cellsi
andj

rij(T ) =
Cov(ni, nj)

√

Cov(ni, ni)Cov(nj , nj)
(2)

whereCov(ni, nj) is the covariance between the activity of the two cells

Cov(ni, nj) = 〈(ni(t) − νi)(nj(t) − νj)〉 =
1

L

L
∑

t=0

(ni(t) − νi)(nj(t) − νj) (3)

and where we have dropped the labelT from ni(t;T ) for simplicity. In this case, the mean rateνi of the
i-th cell is defined as the average ofni(t) over its whole lengthL

νi = 〈ni(t)〉 =
1

L

L
∑

t=0

ni(t) (4)

Note thatrij(T ) defined in this way, measures the degree to which fluctuationsin the activity of the
two cells (at temporal resolutionT ) measuredwith respect totheir temporal average across the whole
duration of the spike trains (equation (4)) are predictive of each other.

The activity of neurons recorded from a neurophysiologicalexperiment is non-stationary and can,
in principle, co-vary on a wide range of time-scales. Changes in the excitability of the local circuit or
slow electrode drift can result in coordinated changes in activity over very long time-scales on the order
of several minutes. As recognized before (28), spiking correlations calculated using the above method
in these conditions would likely reflect to a large extent such slow covariations, which we are not the
focus of our study. Covariations of a given time-scale (in our case, we are interested in the time-scale
of synaptic interactions, i.e., tens of milliseconds) can be isolated by using jitter methods (29, 30). The
idea is to replace the mean activity of the neuron across the whole recordingνi in equation (3) by the
instantaneous meanνi(t;J) at time t across an ensemble of jittered surrogates of the measured spike
trains. In this case, equation (3) reads

Cov′(ni, nj) = 〈(ni(t) − νi(t;J))(nj(t) − νj(t;J))〉

=
1

L

L
∑

t=0

(ni(t) − νi(t;J))(nj(t) − νj(t;J)) (5)

and

νi(t;J) =
1

NJ

Njitt
∑

k=1

ni(t;Jk) (6)
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whereni(t;Jk) is the activity at time resolutionT (or ‘spike count’) of thekth jittered version of the
recorded spike trainsi(t) at timet andNjitt is the number of jittered surrogates. We jittered spike trains
by adding to each spike time an independent Gaussian random variable of zero mean and std. dev.J .

Jittering the spike trains independently by an amountJ only destroys correlations on time-scales
≪ J . Thus, since slow covariations (of a time-scale≫ J) are present both in the actual data and in
the jittered surrogates, non-zero values of equation (5) for a pair of spike trains denote the presence of
correlations in their spike trainsonly at time scales≪ J . Since we are interested at correlations of
time-scaleT , in all our analyses we fixedJ = 4T . In Fig. 4 of the main text,T = 50 ms and in Fig.
S9,T was varied from 10 to 500 ms. We obtained a normalized correlation (correlation coefficient), by
generalizing equation (2)

rij(T ) =
Cov′(ni, nj)

√

Cov′(ni, ni)Cov′(nj, nj)
(7)

Since we use both a Gaussian kernelKT (t) and a Gaussian distribution of jitter times, in practice, we
calculatedνi(t;J) by convolving the measured spike trainsi(t) with a normalized Gaussian kernel of std.
dev.

√
T 2 + J2, which is the asymptotic value of equation (6) asNjitt → ∞. Note that the computation

of Cov′(ni, nj) simply amounts to the dot product of two time series obtainedfrom the original spike
trains by convolution with ‘mexican-hat’ kernel given by a difference of Gaussians of variancesT 2 and
T 2 + J2.

The effect of correcting for slow co-modulations of the rates on the computation ofrij(T ) can be
assessed by examining the cross-correlograms (CCGs) of individual pairs (Fig. S10). Calculating corre-
lations with respect to the mean rate across the recording isequivalent to comparing peaks or troughs in
the CCGs with the dashed gray line. Calculating correlations by using the jittered surrogates is equiva-
lent to comparing the CCGs with the red solid line. In most cases the difference between these two ways
of estimating correlations is small, but occasionally it isnot (some examples are marked by asterisks in
Fig. S10).

1.3.5 Assessing significance of correlations

For each population recording, we generatedNjitt = 500 surrogate data sets. In each surrogatel (l =

1, . . . , Njitt), the spikes times of each of the recorded neurons were jittered by adding a independent
Gaussian random variable of zero mean and std. dev.4T . In this way, to the measured correlation
rij(T ) of each pairij, we associatedNjitt surrogate correlationsr{ij}l

(T ). Note that, by construction,
the average ofr{ij}l

(T ) across the distribution of jittered surrogates is zero. We calculated a p-value for
therij(T ) of the original spike trains as

p = (Npos +Nneg)/Njitt

where

Npos = number of r{ij}l
(T ) > |rij(T )|

Nneg = number of r{ij}l
(T ) < −|rij(T )| (8)
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In Fig. 4 of the main text, therij(T ) of a pair of spike trains was deemed significant if p< 0.01. We
used the same method to assess the significance of the population-averaged correlation̄r(T ) (Fig. 4E).

We also calculated the histogram of correlations for each surrogate data set. The white lines in Fig.
4B,D of the main text is the average histogram across theNjitt = 500 surrogates. To give an estimate
of the variability in the correlation histogram across jittered surrogates, we found, for each value of
correlationr, the distribution of values across surrogates of the value of each of the 500 histograms at
that value ofr. The gray bands in Fig. 4B,D enclose 95% of the mass of the distribution obtained for
each value ofr.

1.3.6 Cross-correlograms

The value of the raw cross-correlogram (CCG) between a pair spike trainsij was computed following

CCGij(τ) =
1

dt2L

L
∑

t=0

si(t)sj(t+ τ)

νiνj
(9)

where the sum int runs over time at steps of sizedt, L is the number of binsdt in the period (ACT or
InACT) and the average ratesνi are given by equation (4). With this normalization, if the spike trains
were independent (on all time-scales)CCGij(τ) would be equal to one at all lagsτ (except for finite
sample fluctuations).

In the insets of Fig. 4B show the average cross-correlogramsCCG+(τ) andCCG−(τ) over all
positively and negatively correlated pairs with p< 0.01, computed as:

CCG±(τ) =
1

N±

N±
∑

i,j

CCGij(τ), (10)

where the sums runs over theN+ (N−) positively (negatively) correlated pais with p< 0.01. In this
figure we useddt = 5 ms.

In Fig. S10 we show individual functionsCCGij(τ) (white) together with the meanCCG{ij}(τ)

(red) obtained for each pairij by averaging overNjitt = 1000 jittered surrogate pairs{ij}l (l =

1, . . . , Njitt) (see above).

1.3.7 Distance-dependence of correlations

We assessed the distance dependence of the meanr̄ and standard deviationσr of the correlation during
periods of activation (Fig. S11). To do this, each pair of spike trains was assigned a distance equal to the
distance between the shanks where the two cells were recorded. Pairs recorded in the same shank were
assigned a distance equal to zero. We then lumped all pairs with the same distance and recomputed ther

histograms for each of the 8 distances in each recording session.
We calculated by a simple linear regression how the particular statistic (̄r or σr) depended on the

distance between shanks across recording sessions. In order to know whether the slopemdata of the
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regression was significantly different from zero we used a non-parametric shuffle test. For each statistic,
each point was given by a pair (distance-correlation), corresponding, for instance, to the mean correlation
of all pairs recorded in the same shank in a given experiment.We created 5000 surrogate data sets by
randomly shuffling the distance labels of each point, and calculated the slope of the regression for each
surrogate. Thep-value reported in the text is the fraction of the surrogateswith a slope greater than the
absolute value ofmdata or smaller than minus the absolute value ofmdata.
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2 Analytical description of the recurrent network dynamics

Asynchronous states in recurrent networks have been studied analytically before (2, 31–38). However
previous treatments lacked at least one of two features which are crucial for an accurate description of
how recurrent circuits in the cortex operate: the networks studied so far were either sparsely connected
or weakly coupled. In order to make these concepts precise, we adopt thelargeN limit, considering a
series of models of increasing size, in which connection probabilities and synaptic strengths scale in a
systematic manner with the sizeN of the network (considering how dynamical properties of thenetwork
change withN allows one to make qualitative statements which are robust to changes in the precise
values of model parameters). A network is said to havedenseconnectivity if the probability that two
cells are connected does not decrease with the network size.In a random densely connected network with
connection probabilityp, pairs of cells will therefore share a fractionp of their inputs on average, even in
the limit of very large networks. This should be contrasted to the case ofsparseconnectivity. We say a
network is sparsely connected if the average number of pre-synaptic inputs to a neuron is independent of
the network size, i.e., if the probability of connection scales as∼ O(1/N). Similarly, a network is said
to havestrongcoupling if the number of inputs needed to make the neuron fireis a small fraction of the
total number of inputs the cell receives; following (2), we assume that this fraction approaches zero as
network size increases. Thus, the connection strength has to decrease with the network size at a slower
rate than∼ O(1/N). For the current model, we assumed the synaptic couplings scale as∼ O(1/

√
N).

With this scaling, the magnitude of temporal fluctuations inthe synaptic input currents to the neurons in
an asynchronous network saturates to a value of the order of the spiking threshold in the limit of large
networks (2). Thus, in a densely connected, strongly coupled network, neurons share inputs and synaptic
currents display strong temporal fluctuations, even in the limit of very large networks.

Here, we present some aspects of the analysis that we developed to describe asynchronous activity
in densely connected, strongly coupled recurrent networks. Our goal is to lay down formally the ingre-
dients necessary to understand the behavior of the population-averaged firing rates and correlations in
the stationary self-consistent asynchronous solution. Westart in section 2.1 by describing the architec-
ture of the network, and by reviewing the formalism we employed, introduced in (39). In section 2.2
we characterize the behavior of firing rates in the asynchronous state. This will later be used to show
that the asynchronous state displays tracking of fluctuations. In addition, it generalizes previous work
in sparse balanced networks (2) to the densely connected case. Our main theoretical resultis presented
in section 2.3, where we calculate the leading order of the population-averaged pair-wise correlations
in the asynchronous state. We show that the leading order is∼ O(1/N), which justifies our claim that
the network is asynchronous. In the next sections we illustrate two important properties of the asyn-
chronous solution. First, in section 2.4 we show that the leading-order population averaged correlations
just described are equivalent to the tracking of the instantaneous external activity by the excitatory and
inhibitory populations, and that tracking becomes more accurate for largerN . The tracking phenomenon
is what ensures mechanistically that global fluctuations are not amplified into large network-wide syn-
chrony. We finish this section sketching how to generalize our results (a single network receiving inputs
from an external network of independent neurons) to the propagation of activity between several asyn-
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chronous networks, thus establishing the full self-consistency of the solution. Second, in section 2.5 we
show that the asynchronous solution for the population-averaged correlations is also equivalent to the
cancellation of the correlations between the different components of the synaptic currents. This is im-
portant because such cancellation can be directly tested experimentally. An illustration of the experiment
is performed numerically in Fig. 3C-D of the main text.

2.1 Network Architecture and Dynamics

We consider a recurrent network composed ofN excitatory (E) andN inhibitory (I) cells. The probabil-
ity that a neuron of populationα = E, I receives input from a neuron of populationβ = E, I is denoted
by pαβ. In addition to the cells in the recurrent network, we also consider input from an external (X)
population of neurons, which do not receive inputs from the recurrent network (see Fig. 2A main text).
In particular, we assume that there areN excitatory cells in the external network and that the probability
of a connection from an external cell to a cell in populationα of the recurrent network ispαX .

The strength of the synaptic connection from cellj in populationβ to cell i in populationα is denoted
asJαβ

ij (Greek letters refer to populations and Latin letters to specific neurons). We consider randomly
connected networks in which

P (Jαβ
ij =

jαβ√
N

) = pαβ

P (Jαβ
ij = 0) = 1 − pαβ (11)

where the quantitiesjαβ are order unity (which we write as∼ O(1)), meaning that they are independent
of the network size. Synaptic connections are thusstrong. This network architecture is similar to the
one analyzed in (2), with an important difference. In that network, the average number of pre-synaptic
inputs was held fixed independently of the network size, whereas in our network it is a fixed fractionp
of the total number of neurons per populationN . Thus, in that network the fraction of shared input for
any pair of cells vanishes in the limit of large networks, whereas in our network its average is a constant
pαβ independently of the network size.

We use the formalism introduced by Glauber (39). This formalism has often been used in neu-
roscience applications (1, 40), including the study of correlations in recurrent networks (32) and the
analysis of balanced recurrent networks (2). In this framework, neurons are modeled as binary elements.
We will denote the state at timet of neuroni from populationα asσα

i (t) = {0, 1}. All neurons update
their state independently and stochastically. We will denote asw(σα

i ) the probability per unit time that
neuroni from populationα changes its state fromσα

i to 1 − σα
i , and byP (~σ, t) the probability that

the state of the whole network is~σ = {σi} (i = 1, . . . , 3N ) at timet. As described in (39), one can
write an equation for the rate of change ofP (~σ, t) (the master equation) by noting that if neurons update
independently, in an infinitesimal interval of lengthdt, at most one neuron can change its state. If follows
that

d

dt
P (~σ, t) = −P (~σ, t)

N ′
∑

i

w(σi) +
N ′
∑

i

P (~σ(σ∗
i
), t)w(1 − σi) (12)
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whereN ′ ≡ 3N and~σ(σ∗
i
) = {σ1, . . . , 1 − σi, . . . , σN ′}. The equation should be solved with the initial

condition{~σ, 0}. Using this equation, one can write up an equation for the temporal evolution of any
arbitrary product of neuronal variables. For instance, thetemporal evolution of the average activity of
neuroni with respect toP (~σ) is given by

d

dt
〈σi〉(t) ≡

d

dt

(

∑

~σ

P (~σ, t)σi

)

=
∑

~σ

(

d

dt
P (~σ, t)

)

σi

Substituting equation (12) into the previous equation, oneobtains

d

dt
〈σi〉(t) =

∑

~σ





N ′
∑

j

P (~σ(σ∗
j
), t)w(1 − σj)σi − P (~σ, t)

N ′
∑

j

w(σj)σi





Since we are summing over all configurations~σ, for each term withσj = 1 there is a corresponding term
with all other neurons in the same state butσj = 0 and vice-versa. Renaming the dummy indices in the
summation overj is therefore equivalent to making the following replacements for the positive terms in
the r.h.s of the last equation: whenj 6= i, P (~σ(σ∗

j
), t)w(1 − σj)σi = P (~σ, t)w(σj)σi, and whenj = i,

P (~σ(σ∗
i
), t)w(1 − σi)σi = P (~σ, t)w(σj)(1 − σi). The terms withi 6= j cancel with their corresponding

negative terms and one is left with

d

dt
〈σi〉(t) =

∑

~σ

P (~σ, t) [w(σi)(1 − 2σi)] (13)

Using similar arguments it is straightforward to find the expression for the joint probability that two
neurons are active at the same time

d

dt
〈σiσj〉(t) =

∑

~σ

P (~σ, t) [w(σi)(1 − 2σi)σj + w(σj)(1 − 2σj)σi] (14)

The dynamics of rates and correlations (of any order) is therefore completely determined by the
transition probabilitiesw(. . .). In our case they take the form

w(σα
i ) =

1

τα
[σα

i − Θ(hα
i )]2 (15)

w(σX
i ) =

1

2τX

[

1 − (2σX
i − 1)(2mX

i − 1)
]

(16)

whereΘ(. . .) is the Heaviside step function,mX
i is an external parameter specifying the mean activity

level of celli from the external network, andhα
i is the net afferent current to this cell, given by

hα
i =

E,I,X
∑

β

N
∑

j

Jαβ
ij σ

β
j − θα

i (17)

For notational simplicity we have included the thresholdθα
i of each neuron as a constant negative term

in its input current. A neuron’s output does not contribute to its input, so the summation in the definition
of hα

i does not include the term proportional toσα
i .
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According to equation (15), at the time of its update, therefore, a cell from the recurrent network
becomes active (inactive) if the afferent input from all other neurons, including the external ones is
greater (smaller) than its threshold. According to equation (16), on the other hand, the state to which
external cells are updated to does not depend on the state of the rest of the network. Because of this, it
will follow that for any given pair of external neurons,P (σX

i ;σX
j ) = P (σX

i )P (σX
j ). Given the form of

the transition probabilities, the symbol〈. . .〉, which stands for an average over the sources of stochasticity
in the dynamics, will stand for an average over the distribution of update times of all neurons, and over
the probability that an external neuron will become activated when its state is updated.

Let us define the average activity of celli from populationα at timet asmα
i (t) = 〈σα

i 〉(t). Using
the transition probabilities (equations (15-16)), equations (13) for the temporal evolution of the average
activities become

τα
d

dt
mα

i (t) = −mα
i (t) + 〈Θ(hα

i (t))〉

τX
d

dt
mX

i (t) = −mX
i (t) +mX

i (18)

Similarly, we define the instantaneous correlation (strictly speaking this is the instantaneous covariance,
but we will use the term correlation throughout the description of our analytical results) at timet between
unitsαi andβj as

rαβ
ij (t) ≡ 〈δσα

i (t)δσβ
j (t)〉 αi 6= βj

whereδx ≡ x − 〈x〉 andα, β = E, I,X. Substituting the transition probabilities in equations (15-16)
into equations (13-14) one obtains the following equationsfor the temporal evolution of the pair-wise
correlations

ταβ
d

dt
rαβ
ij (t) = −rαβ

ij (t) +
τα

τα + τβ

[

〈σα
i (t)Θ(hβ

j (t))〉 −mα
i (t)〈Θ(hβ

j (t))〉
]

+
τβ

τα + τβ

[

〈Θ(hα
i (t))σβ

j (t)〉 − 〈Θ(hα
i (t))〉mβ

j (t)
]

ταX
d

dt
rαX
ij (t) = −rαX

ij (t) +
τX

τα + τX

[

〈Θ(hα
i (t))σX

j (t)〉 −mα
i (t)mX

j (t)
]

whereταβ ≡ (τατβ)/(τα + τβ). We will be interested in the value of the firing rates and pair-wise
correlations in astationarysituation (which we will also refer to as equilibrium) wherethe memory of
the initial conditions has been lost and the statistical properties of the network activity are no longer
changing. This is equivalent to taking thet→ ∞ limit of the previous equations, which results in

mα
i = 〈Θ(hα

i )〉 (19)

mX
i = mX

i (20)

(τα + τβ)rαβ
ij = τα〈δσα

i δΘ(hβ
j )〉 + 〈δΘ(hα

i )δσβ
j 〉τβ (21)

(τα + τX)rαX
ij = 〈δΘ(hα

i )δσX
j 〉τX (22)

The reason the external-recurrent correlations only contain one term is that neurons from the recurrent
network do not project to, and therefore have no influence on,the external neurons.
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The difficulty in evaluating this set of coupled non-linear equations lies in the fact that arbitrary
dependencies between the activities of different neurons preclude, in principle, a closed form for the
probability distribution of the synaptic currentshα

i . Since thehα
i are the sum of a large number of

stochastic variables, the central limit theorem ensures that, if these variables were independent, the prob-
ability distribution ofhα

i would be well approximated by a Gaussian distribution for large networks.
However, the existence of shared inputs introduces correlations in the activities of the cells. The central
limit theorem can nevertheless still be used if these correlations are sufficiently weak. In fact, if the
population-averaged correlations are inversely proportional to the network sizeN (and higher order cu-
mulants decay fast enough), the distribution ofhα

i can still be well approximated by a Gaussian for large
N (41). Network states in which the population averaged correlations scale as∼ O(1/N) are called
asynchronous(32). In an asynchronous state, neurons areeffectivelyindependent (section 3.1), in the
sense that the correlations do not significantly impair how well the average firing rate in the network can
be estimated (Fig. S2).

Our strategy will therefore be to firstassumethat the network is asynchronous in the steady states.
With this assumption, we will develop equations (19-22) to obtain expressions for the population av-
eraged firing rates and pair-wise correlations, in the network. After this, we will show that there are
solutions to these equations in which the network is indeed asynchronous.

We will do this in two steps. First, we will develop the set of equations (19-22) without using the
fact that the synaptic connectionsJαβ

ij are stochastic, but using the central limit theorem to invoke a
Gaussian distribution for the synaptic currentshα

i . This leads to a set of coupled equations for the firing
rates and pair-wise correlations of each neuron and neuronal pair in the network, which we refer to as
the microscopicequations. Second, we will average over the distribution ofthe synaptic connectivity
in order to obtainmacroscopicequations for thepopulation averagedfiring rates and correlations in the
network.

2.2 Firing Rates

We assume that the distribution of the afferent currenthα
i to cell αi is well approximated by a Gaus-

sian. Let us denote the mean and variance of the the Gaussian distribution of the current to cellαi at
equilibrium by

µα
i ≡ lim

t→∞
〈hα

i (t)〉 (sα
i )2 ≡ lim

t→∞
〈(δhα

i (t))2〉 (23)

In terms of these quantities, and following the notation in (42), equation (19) for the equilibrium
firing rate of cellαi becomes

mα
i = H (ψα

i ) (24)

whereψα
i ≡ −µα

i /
√

(sα
i )2 and

H(z) ≡ 1√
2π

∫ ∞

z
dx exp(−x2/2)

Equation (24) gives the firing rate of every individual neuron in the network in terms of the activity of
all other neurons and the properties of the connectivity. Wenow would like to obtain astatisticaldescrip-
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tion of activity in the network, specifying, for instance, the average firing rate in a given sub-population
mα ≡ ∑

im
α
i /N . In order to do this, one takes advantage of the fact that the network connectivity

is stochastic. Because of this, population averages can be thought of assampleaverages which, if the
network is large, will provide accurate estimates of thedistributionaverages induced by the probabilistic
connectivity. Let us denote the probability distribution of a given connectivity matrix asP (J). To com-
pute averages overP (J), we note that both the meanµα

i and the variance(sα
i )2 of the current are linear

combinations of a large number of uncorrelated random variables (the synaptic variablesJαβ
ij ). Thus,

P (J) induces a probability distribution inµα
i and(sα

i )2 which will be well approximated by a Gaussian
for large networks. We denote this by

µα
i = µα + xµα∆µα

(sα
i )2 = s2α + xs2

α
∆s2α

where thex’s are zero-mean, unit-variance Gaussian random variables, and where we have defined
(∆a)2 ≡ [(a − [a])2]. We use the notation[. . .] to denote averages over the distribution of hetero-
geneityP (J) (43). Although the variablesxµα andxs2

α
are in principle correlated, it can be shown that

the cell-to-cell variability in the magnitude of the temporal fluctuations in synaptic current∆s2α decays
with the network size, whereasµα, ∆µα ands2α do not. Thus, for large networks, one only needs to
consider the following population averages

µα =
1

ǫ

∑

β

Jαβmβ − θα (25)

(∆µα)2 =
∑

β

J
(2)
αβ qβ +

∑

β

J2
αβ(qβ −m2

β)

s2α =
∑

β

J
(2)
αβ (mβ − qβ) + cαα

where we have made the following definitions:ǫ ≡ 1/
√
N . Jαβ ≡ [Jαβ

ij ] = jαβpαβ and J (2)
αβ =

[(Jαβ
ij −[Jαβ

ij ])2] = j2αβpαβ(1−pαβ). These are, respectively, the average and variance of the distribution
of synaptic efficacies between pre-synaptic neurons from populationβ and post-synaptic neurons from
populationα. Finally, qα ≡ ∑

i(m
α
i )2/N is the second moment of the population distribution of firing

rates, andcαβ =
∑

ij〈δhα
i δh

β
j 〉/N2 is the average correlation between the synaptic currents toneurons

in populationsα andβ (44). We show below that the population-averaged current correlation decreases
with the network size,cαβ ∼ O(ǫ), so it can also be neglected in the previous equations in the limit of
large networks, i.e., asǫ → 0. In terms of these quantities, the population-averaged firing rate and the
second moment of the rate distribution can therefore be, forlarge networks, approximated by

mα =

∫

Dx H

(

−µα+x∆µα√
s2α

)

= H

(

− µα√
s2α+(∆µα)2

)

(26)

qα =

∫

Dx

[

H

(

−µα+x∆µα√
s2α

)]2

(27)
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whereDx is a Gaussian measure of zero-mean and unit-variance.
As was shown in (2), one does not actually have to solve equation (26) in the largeN limit in order

to obtain the leading order of the firing rates in the network.Because each neuron receives∼ O(N)

synaptic inputs, but only∼ O(
√
N) are enough to make it fire, the net magnitude of the total excitation

and inhibition felt by the neurons is very large compared to the firing threshold (factor1/ǫ in the r.h.s. of
equation (25)) In order for the firing rates not to be at eitherzero or at saturation, these large excitatory and
inhibitory drives have to cancel, but this cancellation canonly happen if the firing rates take on precise
values. Thus, for large networks, imposing the cancellation determines the rates. Although this has
already been shown in (2,42), we briefly now outline the formal derivation of this idea for completeness
and because an essentially identical rationale determinesthe average correlations. In order for the net
synaptic input in equation (25) to be of order unity (to avoidcomplete quiescence or saturation), it has to
be true that

∑

β

Jαβmβ =
∑

β=E,I

Jαβmβ + JαXmX ∼ O(ǫ)

Asymptotically, i.e., asǫ→ 0, this is a linear equation that determines the firing rates atequilibrium
∑

β=E,I

Jαβmβ = −JαXmX

so that
mα = −

∑

β=E,I

J−1
αβ JβXmX ≡ AαmX (28)

Thus, asymptotically, the population averaged firing rate of each population is proportional to the popu-
lation averaged rate of the external neurons.

The conditions for this solution to be realized have been described in (42). We do not repeat the
analysis here, but just mention that the balanced solution is very robust (see also Fig. S4), i.e., it does not
require fine-tuned values for any of the network parameters (connection strengths, connection probabili-
ties and neuronal thresholds and time-constants).

2.3 Instantaneous Pair-wise correlations

In order to obtain an expression for the instantaneous pair-wise correlations in equations (21-22) one
needs to evaluate terms of the type〈Θ(hα

i )σβ
j 〉. Let us first rewrite them in terms of the conditional

probability that neuronαi is active given that neuronβi is active at the same time. To do this, we note
that

〈Θ(hα
i )σβ

j 〉 =
∑

~σ

P (~σ)σβ
j Θ(hα

i ) =
∑

~σ

P (~σ(σ
β
j

)|σβ
j )P (σβ

j )σβ
j Θ(hα

i )

= mβ
j

∑

~σ(σ
β
j

)

P (~σ(σ
β
j

)|σβ
j = 1)Θ(hα

i (σ
β
j

) + Jαβ
ij ) = mβ

j 〈Θ(hα
i (σ

β
j

) + Jαβ
ij )|σβ

j = 1〉

where〈. . . |σi = 1〉 =
∑

~σ(σi)
P (~σ(σi)|σi = 1) is an average over the conditional distribution of the

network activity~σ given that neuronσi is active, and~σ(σi) means that neuronσi is excluded from all
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those included in~σ (and similarly forhα
i (σ

β
j

)). The average over the conditional distribution is equivalent
to an average over a Gaussian random variable

zα
i (σ

β
j

) = hα
i (σ

β
j

) + Jαβ
ij

with mean and variance given by

µα
i ≡ 〈zα

i (σ
β
j

)|σβ
j = 1〉

(sα
i )2 ≡ 〈(zα

i (σ
β
j

))2|σβ
j = 1〉 − (µα

i )2

so that
〈Θ(hα

i )σβ
j 〉 = H(−µα

i /
√

(sα
i )2)mβ

j (29)

We develop the previous expression in two steps. First, we relate averages over the conditional distribu-
tion to averages over the equilibrium distribution by noting that

〈σα
i |σβ

j = 1〉 = 〈σα
i (1 + δσβ

j /m
β
j )〉

〈σα
i σ

γ
k |σ

β
j = 1〉 = 〈σα

i σ
γ
k(1 + δσβ

j /m
β
j )〉

Second, we relate properties ofhα
i (σ

β
j

) to properties ofhα
i by recalling that

hα
i (σ

β
j

) = hα
i − Jαβ

ij σ
β
j

(hα
i (σ

β
j

))2 = (hα
i )2 + (Jαβ

ij σ
b
j)

2 − 2Jαβ
ij h

α
i σ

β
j

which leads to

〈zα
i (σ

β
j

)|σβ
j = 1〉 = 〈hα

i (1 + δσβ
j /m

β
j )〉

〈(zα
i (σ

β
j

))2|σβ
j = 1〉 = 〈(hα

i )2(1 + δσβ
j /m

β
j )〉

Using these equations, one can express the conditional ratein terms of the meanµα
i and variance(sα

i )2

of the current over the (unconditional) equilibrium distribution. This is done by noting that

〈(hα
i )2δσβ

j 〉 = 〈(δhα
i )2δσβ

j 〉 + 2µα
i 〈δhα

i δσ
β
j 〉

Making the definitions
Aαβ

ij ≡ 〈δhα
i δσ

β
j 〉 Bαβ

ij ≡ 〈(δhα
i )2δσβ

j 〉
one obtains

µα
i = µα

i + (Aαβ
ij /m

β
j )

(sα
i )2 = (sα

i )2 + (Bαβ
ij /m

β
j ) − (Aαβ

ij /m
β
j )2

Equation (29) therefore becomes

〈Θ(hα
i )σβ

j 〉 = H





−µα
i − (Aαβ

ij /m
β
j )

√

(sα
i )2 + (Bαβ

ij /m
β
j ) − (Aαβ

ij /m
β
j )2



mβ
j (30)
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If an asynchronous state exists in this network, the population average of the quantitiesAαβ
ij /m

β
j and

(Bαβ
ij /m

β
j ) − (Aαβ

ij /m
β
j )2, which quantify the difference between the conditional andunconditional

means and variances to neuronαi respectively, must be of order∼ O(1/N) at most. Imposing these
conditions results in a series of equations that set the value, not only of the population-averaged correla-
tions, but also of a number of other properties of the activity in the network such as the degree to which
cells with a higher firing rate tend to have a higher correlation with all other neurons in the network.
Here, however, we will only describe how to calculate the population-averaged correlations and firing
rates in the network, for which it is sufficient to keep track of terms linear inAαβ

ij /m
β
j (45). Developing

equation (30), thus, up to first order inAαβ
ij /m

β
j , one obtains

〈Θ(hα
i )σβ

j 〉 = mα
i m

β
j + ṁα

i A
αβ
ij +O((Aαβ

ij )2) +O(Bαβ
ij )

where
ṁα

i ≡ ∂mα
i /∂µ

α
i = ∂H(−µα

i /
√

(sα
i )2)/∂µα

i

is the slope of the input-output relationship of the neuron evaluated at the value that the mean current
takes in equilibrium. This allows us to write the following expression for the (microscopic) instantaneous
correlations at equilibrium

(τα + τβ)rαβ
ij = ṁα

i A
αβ
ij τβ + ṁβ

jA
βα
ji τα (31)

(τα + τX)rαX
ij = ṁα

i A
αX
ij τX (32)

where
Aαβ

ij = Jαβ
ij m

β
j (1 −mβ

j ) +
∑

γk 6=βj

Jαγ
ik r

γβ
kj (33)

The quantityAαβ
ij measures the influence of pre-synaptic cellβj on the firing of post-synaptic cellαi. The

first term inAαβ
ij contains the contribution of a direct connection from cellβj to cellαi to their pair-wise

correlation. This effect is also proportional to the temporal variance of the pre-synaptic cellmβ
j (1−mβ

j ).
The second term contains the contributions of all those cells which project to the post-synaptic cellαi

and with which the pre-synaptic cellβj is correlated.
We would now like to obtain expressions for the population-averaged correlationsrαβ ≡∑

ij r
αβ
ij /N

2

(if α = β in the previous expression, the pre-factor should be[N(N − 1)]−1). As described above, we
will do this by averaging over the distribution of randomly connected networksP (J), again assuming
that dynamical properties and functions ofJαβ

ij factorize underP (J). Let us start with the external-
recurrent correlations in equation (32). Averaging overP (J) one gets

(τα + τX)rαX =



ǫ J̃αXaX +
1

ǫ

∑

γ=E,I

J̃αγrγX



 τX (34)

whereaX ≡ mX − qX and J̃αβ ≡ ṁαJαβ , with ṁα ≡ [ṁα
i ] = ∂mα/∂µα. In the last section, we

saw that due to the strong connectivity, there was a mismatchbetween the magnitude of the net input to
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the neurons and their activity unless there was a precise cancellation of net excitation and inhibition. A
similar situation takes place here. Even if we assume that the network is indeed asynchronous, so that
all population averaged correlations scale asrαβ ∼ O(ǫ2), the l.h.s. of the previous equation is∼ O(ǫ2)

and the r.h.s is∼ O(ǫ). Thus, the equation has no solution unless there is a precisecancellation between
the different terms in the r.h.s. To reveal this explicitly,we expressrγX as a Taylor series inǫ

rγX =
∑

n=0

r
(n)
γXǫ

n

substitute this expression in equation (34) and evaluate the equation at each order inǫ separately. Doing
this shows that the first non-zero term in the series isr

(2)
γX , whose value is given by the solution of

∑

γ=E,I

J̃αγr
(2)
γX + J̃αXaX = 0 −→ r

(2)
γX = −

∑

α=E,I

J̃−1
γα J̃αXaX = AγaX (35)

The last equality follows from the fact that

∑

α=E,I

J̃−1
γα J̃αX =

∑

α=E,I

J−1
γα JαX ≡ −Aγ

Thus, we have shown that
rαX = ǫ2AαaX +O(ǫ3)

Using similar arguments, equation (31) can be written as

(τα + τβ)rαβ = ǫ J̃αβaβτβ +
1

ǫ





∑

γ=E,I

J̃αγrγβ + J̃αXrXβ



 τβ +

ǫ J̃βαaατα +
1

ǫ





∑

γ=E,I

J̃βγrγα + J̃βXrXα



 τα (36)

Again, expanding therαβ andaα in powers ofǫ and evaluating the previous equation at each order, the
term∼ O(ǫ) results in the following equation

J̃αβa
(0)
β τβ +





∑

γ=E,I

J̃αγr
(2)
γβ + J̃αXr

(2)
Xβ



 τβ + J̃βαa
(0)
α τα +





∑

γ=E,I

J̃βγr
(2)
γα + J̃βXr

(2)
Xα



 τα = 0

wherea(0)
α = m

(0)
α − q

(0)
α is the leading-order population-averaged temporal variance of the activity of

cells in populationα. In the general case, the solution to the previous equation is that the first three and
last three terms in the last equation (which are identical ifwe exchange the values ofα andβ) are both
equal to zero, i.e.,r(2)αβ is the solution of

∑

γ=E,I

J̃βγr
(2)
γα + J̃βXr

(2)
Xα + J̃βαa

(0)
α = 0
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It is useful to define the correlationvαβ between the instantaneous activity of populationsα andβ at
equilibrium. Using the notationδαβ for the Kronecker delta,vαβ is given by

vαβ = lim
t→∞

〈
∑

i

(δσα
i (t)/N)

∑

j

(δσβ
j (t)/N)〉 = rαβ + ǫ2δαβaα (37)

in terms of which the previous equation can be written as

∑

γ=E,I

J̃βγv
(2)
γα + J̃βXr

(2)
Xα = 0 −→ v(2)

γα = −
∑

β=E,I

J̃−1
γβ J̃βXr

(2)
Xα = AγAαaX

The solution for the population-averaged instantaneous pair-wise correlations in the steady states in our
network is therefore

rEX = ǫ2AEaX +O(ǫ3)

rIX = ǫ2AIaX +O(ǫ3) (38)

rEE = ǫ2(A2
EaX − a

(0)
E ) +O(ǫ3)

rII = ǫ2(A2
IaX − a

(0)
I ) +O(ǫ3)

rEI = ǫ2AEAIaX +O(ǫ3) (39)

2.4 Tracking of fluctuations in the asynchronous state

There is a simple way of expressing the leading order solution for the correlations in the network. Let us
consider the difference between the normalized instantaneous activities of the excitatory and inhibitory
populationsmα(t) =

∑

i σ
α
i (t)/N and the instantaneous activity of the external population,given by

∆αX(t) ≡ 1

AαmX
(
∑

i

σα
i (t)/N) − 1

mX
(
∑

i

σX
i (t)/N) α = E, I

We can measure the degree to which the activity in the recurrent network tracks the instantaneous activity
in the external population by calculating the variance of∆αX(t) at equilibrium,

〈(∆αX(t) − 〈∆αX(t)〉)2〉 =
1

Nm2
X

(

(aα + (N − 1)rαα)/A2
α + aX − 2NrαX/Aα

)

Replacing expressions (38-39) into this formula one obtains that, to leading order, it vanishes. Similarly,
it is simple to show in the same way that the variance of∆EI(t) also vanishes to leading order.

Thus, although the magnitude of the temporal fluctuations ofthe instantaneous firing rate of each
population is∼ O(ǫ), the magnitude of the temporal fluctuations of the instantaneousdifferencein firing
rates is∼ O(ǫ3/2). This implies that as the network gets larger, the instantaneous firing rate in the three
populations track each other more faithfully, and that, asymptotically, tracking isperfect, i.e., asN → ∞

mE(t) = AE mX(t) (40)

mI(t) = AI mX(t) (41)
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This result captures the essential difference between the sparse balanced network (2,42) and the densely-
connected one. In the sparse balanced network, the recurrent feedback results in linear propagation of
the average firing rate. In the dense network, not only the average firing rate, but also the instantaneous
fluctuations in activity are faithfully propagated. In these conditions, referring to the average firing rate as
‘signal’ and to the fast temporal fluctuations as ‘noise’ becomes questionable, since both are propagated
with the same accuracy.

Although we have assumed throughout that neurons from the external population were independent,
this assumption can be relaxed. We assumed neurons in theX network were independent in order to
avoid having to define the correlation structure of the external networkad hoc. Our results, however,
are still valid if the external neurons are not independent,as long as the external network is itself asyn-
chronous. Note that this does not qualitatively change the properties of the external input. Simply the
existence of common input makes the average correlation between the external component of the synap-
tic input∼ O(1). Thus, as long as the population-averaged correlation between the external neurons is
∼ O(1/N), this will only lead to quantitative changes in the correlation structure of the input from the
external network. Hence, asynchronous activity self-consistently propagates within and across densely
connected, strongly coupled networks (46). Asymptotic expressions for how rates and correlations prop-
agate from one asynchronous network to another can be derived from a straightforward extension of the
simple equations (40-41) to the case of two asynchronous networks, with network 2 receiving excitation
from network 1. In the largeN limit, it holds that

mE2(t) = A1→2
E mE1(t)

mI2(t) = A1→2
I mE1(t)

Equations for the transformation of rates and correlationscan be readily obtained by equating the tem-
poral average, variance and covariance of the previous expressions

2.5 Balance of current correlations

The leading order solution for the average pair-wise correlations in the network leads to a cancellation
between the different components of the average correlation between the currents to a pair of neurons.
To see this, one just needs to note that

cαβ
ij ≡ 〈δhα

i δh
β
j 〉 =

∑

γk

Aαγ
ik (Jγβ

kj )t

Thus, the average correlation between the synaptic currents to cells in populationsα andβ is equal to

cαβ =
∑

γ

JαγaγJ
t
γβ +

1

ǫ2

∑

γλ

JαλrλγJ
t
γβ (42)

Terms proportional toaγ in the previous sum are the contribution of shared input to the average current
correlation. The other terms measure the contribution of correlations between pre-synaptic inputs to the
average current correlation. Given that the leading order of the population-averaged correlations in firing
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activity is∼ O(ǫ2), the leading order of each term in the previous sum is of orderunity. However, it is
straightforward to check that if one substitutes the solution in equations (38-39) into equation (42), the
positive and negative terms cancel out. Thus,

cαβ ∼ O(ǫ) (43)

Just as linear propagation of average firing rates in the sparse network is extended to linear propagation
of instantaneous firing rates in the dense network, the cancellation of the mean excitatory and inhibitory
synaptic inputs in the sparse network is extended to a cancellation of the positive components of the
population-averaged current correlation (arising from shared input and from network amplification of
correlations between excitatory cells and between interneurons), and a negative term coming from net-
work amplification of the correlations that tracking induces between the excitatory and inhibitory cells.

The structure of the synaptic current correlations is very different in sparselyconnected networks
such as (2, 33). In these networks each component of the current correlation in equation (42), including
those arising from shared input, decrease with the network size in an asynchronous state. Thus, in a
sparsely connected network the asynchronous state is a static feature of the network architecture, whereas
in a densely connected network it is a purely dynamical phenomenon.
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3 Supplementary Results

3.1 Impact of correlations on the instantaneous populationactivity

In this section we discuss the relationship between the (average) magnitude of spiking correlations across
a neural population and the magnitude of the temporal fluctuations in its instantaneous activity. This
relationship has been used to clarify the conditions under which spiking correlations have a significant
impact on the accuracy with which the instantaneous activity of the population can be decoded (32, 47,
48). For completeness with the goal of our study, we illustratethis point graphically on this section.
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Fig. S2: Impact of the average correlation on the instantaneous population activity . (A) Spike rasters (top

three rows) and traces of the instantaneous population activity m(t) (fourth row) for networks of increasing size

N (see colored labels by the rasters) and different correlations: independent cells,̄r = 0 (left column), size-

independent correlations,̄r = 0.1 (center) and correlations which decay in a way inversely proportional to the

network size,̄r = 5/N (right). Correlated spike trains were generated as in Fig. 1(section 1.1.2). Population
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activity m(t) was obtained using a bindt = 5 ms and normalized bydt to yield units of spikes per second.(B)
Normalized temporal variance of the instantaneous activity m(t) (equation 44) vs. network sizeN . In both the

case with̄r = 0 (solid) andr̄ ∼ 1/N (dashed), the variance decreases as1/N , whereas when̄r = 0.1 (dotted) the

variance saturates to
√
r̄. Symbols represent the examples shown in (A) using the same color code.

Let us consider a network composed ofN cells with firing ratem̄ and pair-wise correlation̄r. Spike
rasters of the activity of examples of such a network are shown in Fig. S2A for different network
sizesN (different rows) and different̄r’s (different columns). The instantaneous population activity
m(t) =

∑

i ni(t)/N , whereni(t) is the firing rate of thei-th cell in a time window(t, t+ dt), is shown
for each network in Fig. S2A (bottom). The variance across timeV of the mean activity of the population
m(t), normalized by the variancev of the activity of each cell is given, forN ≫ 1, by

V

v
=

1

N
+ r̄ (44)

The magnitude ofV/v quantifies the error that a downstream structure (using simple averaging) would
make in the estimation of the average activity of the population m̄, or, more precisely, the decrease in
such error for a population of sizeN relative to the error for a population of sizeN = 1. Thus,V/v
measures the extent to which it is advantageous to combine the activity ofN neurons when pooling their
activity.

If neurons are independent (r̄ = 0; Fig S2A, left column),V/v decays as∼ 1/N (Fig. S2B, solid),
the standard scaling of the (squared) error of the mean ofN independent samples. Networks were the
error of m̄ decreases in this way were defined asasynchronous(32). If neurons in the network have a
fixed, size-independent correlation̄r > 0 (Fig S2A, center column), the error in the mean saturates to√
r̄ (Fig S2B, dotted) (47, 48). The smaller̄r, the larger the size of the population at which the error

starts to saturate, but for any size-independentr̄, the error will always saturate nevertheless. We refer
to networks with a size-independentr̄ assynchronous. Notice that the distinction between synchronous
and asynchronous networks defined this way is qualitative, as opposed to a situation where the degree
of synchrony is assessed by the numerical value ofr̄. Although a network of independent neurons is
asynchronous, not all asynchronous networks need to be composed of independent neurons. Equation
(44) shows that a network of correlated neurons can be asynchronous as long the average correlation
decreases with the network size asr̄ ∼ 1/N (Fig S2A, right column; B, dashed). Although correlations
are present in such networks, they do not qualitatively affect the accuracy of the estimation ofm̄.

Given that the sizeN of a physiological network is fixed, what does it mean that thepopulation-
averaged correlation decreases as∼ 1/N? In other words, is it possible to tell whether a networkof
a given sizeis synchronous or asynchronous? Because the numerical value of r̄ generated by an asyn-
chronous network is small enough, it is always advantageousto consider more neurons in the network
to estimate the instantaneous population activity. Thus, in an asynchronous network, the variance of
the instantaneous activity of sub-popuations of sizeK decreases as∼ 1/K, whereas in a synchronous
network, it would start to saturate at a value ofK < N (32).
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3.2 The effect of shared inputs and correlated inputs cancels in recurrent networks

In this section we describe in more detail the way in which theeffect of shared input is cancelled by
the effect of correlations between inputs in the recurrent network studied in Fig. 2 of the main text
(which we will refer to as RecN in this section). We start by showing explicitly that the net contribution
of correlations in firing to the total current correlationc is negative, and that it cancels the positive
contribution toc due to shared input. To do this, we first isolate each of the twoeffects.

To isolate effect of shared input, we considered a simulatedtwo-layer feedforward network. Neurons
in the first layer were independent and had firing rates equal to those of the RecN. By creating the synaptic
connections from the first layer to the read-out population using exactly the same probabilistic rule as in
the RecN (equation (11)), the correlations between currents to cells in the read-out population are equal
to the correlations produced exclusively by shared input inthe RecN. As expected, the distribution of
these correlations is centered atp = 0.2, the average shared input fraction in the RecN (Fig. S3A, blue).

To isolate the effect of correlations in firing, we considered two read-out populations. Each of them
received inputs exclusively from a different half of the RecN, and the synaptic connections to each
population were again created by using the rule in equation (11), except that the probability of connection
was doubledp′ = 2p. By construction, neurons in different read-out populations share no inputs, but
the synaptic current to each of them is statistically identical to the synaptic current to any cell in the
RecN. Thus, correlations between the synaptic currents to cells of different read-out populations reflect
exclusively the effect of correlations in firing in the RecN.Although correlations in firing contribute
both positively and negatively toc (with E-E and I-I correlations contributing positively, andE-I
correlations contributing negatively; Fig. 1D, F of the main text) the pink histogram in Fig. S3A shows
that their net effect is negative, with mean slightly largerthan -p. As described in the main text, the
effects of shared input and of correlations in firing in the RecN cancel each other out (Fig. S3A, black),
and the accuracy of this cancellation increases with the network size (Fig. 2C, black squares, Fig. 2E,
and section 2.5 above). After the cancellation, shared input still explains some fraction of the variance
in the distribution of current correlations (Fig. S3B, bottom; compare with the shared input only case,
top, for a simulation of the same length). The fraction of variance explained by shared input is parameter
dependent, but it does not go to zero with the network size.

An interesting functional consequence of the cancellationbetween the effects of shared input and
correlated input is that it renders the firing correlationrij of a cell pair informative about the presence
of direct connections between the two neurons. The effect ofdirect connections in our network is of
the same order as their magnitude,∼ 1

√
N , which is small when compared separately to the net effect

of shared input or to the effect of firing correlations between inputs, which are both independent of
the network size. However, since these two large effects cancel, the resulting weak correlationcij is
significantly affected by whether the neurons in the pair areconnected or not. To show this, we plotted
rij versus the fraction of shared inputpij (49) for EI pairs in the RecN, using a different color for
unconnected pairs (gray), and pairs with only a direct excitatory (green) or inhibitory (red) connection.
We considered the firing correlationrij instead of the current correlationcij for this analysis because it
reveals the effect of direct connections more explicitly. This is because direct connections have a stronger
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lations between inputs (pink) to the total

current correlation (black) in the recurrent

network presented in Fig. 2 (N = 4096)

of the main text (see text for details).(B)
Correlationcij of individualEE pairs vs.

their shared input fractionpij for the re-

current network (black). Same but for the

case with no correlations between inputs

(see text) shown in blue. Dashed line is the

diagonalcij = pij . (C) Firing correlation

coefficientrij of EI pairs vs. pij for un-

connected pairs (gray) and pairs with only

a direct excitatory (green) or only a direct

inhibitory (red) connection. We used 100

E cells in (A-B) and 50E plus 50I cells

in (C). Simulations lasted200, 000 and106
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effect on lagged than on instantaneous current correlations. Since therij reflect the time integral of the
whole current cross-correlogram, they are sensitive to thelagged correlations between synaptic currents.
The correlations in firingrij clearly depend on the existence and type of direct connection between the
cells (Fig. S3C, vertical colored histograms. Note that thearea under this histograms has been normal-
ized; there are many more unconnected (gray) than connected(red and green) pairs). Since whether a
pair is or not connected is independent from its shared inputfraction, pij explains a lower fraction of
variance ofrij than ofcij , as the former is also strongly dependent on direct connections between the
two cells. Exactly how informativerij is about the three sources of correlation in the network (fraction
of shared input, magnitude and temporal structure of firing correlations between pre-synaptic inputs and
direct connections between the neurons in the pair) is parameter-dependent, but it is a robust property of
the network that all three effects have a significant impact on rij even asymptotically.
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3.3 Robustness of the asynchronous state in the binary network

Since the cancellation between the different sources of positive and negative current correlations in the
network is the result of adynamicmechanism, it is expected that the existence of the asynchronous state
should not depend in a sensitive way on the parameters which characterize the network architecture. Wi-
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thin a broad range, changes in the architecture lead to readjustments in the mean level of activity and the
structure of fluctuations in such a way that the network remains balanced and asynchronous. In order for
the inhibitory feedback to be effective, however, a minimumstrength and speed of inhibition relative to
excitation is needed. We explored the robustness of the asynchronous state numerically by examining
the behavior of the network as the level of recurrent excitation and the inhibitory time-constant were
increased. Recurrent excitation was increased by multiplying the two excitatory synaptic couplingsjαE ,
α = E, I by the same factorλE. We also increased the time constant of inhibitionτI relative to that of
excitation which was fixed atτE = 1.

The asynchronous state is stable for a wide range of values ofλE andτI , but eventually becomes
unstable when either inhibition becomes too weak or too slowcompared to excitation (Fig. S4A-D). If
one restricts the analysis to cases whereλE = τI , the asynchronous state becomes unstable beyond a
critical valueλE = τI ≃ 1.5 (Fig. S4E-F). Beyond this point the inhibitory feedback is not efficient
enough and the network activity displays large amplitude oscillations.

3.4 Effect of time-varying external inputs on correlationsin the binary network

Our theoretical analysis was restricted to stationary conditions, i.e., constant firing rates of neurons in
theX population. This situation however, is very restrictive. Although we have shown that the activated
state under urethane anesthesia is well described by essentially stationary spiking (Fig. 4 main text),
firing rates are generally expected to change in time, eitherdue to internal dynamics under anesthesia
or due to sensory stimuli, motor behavior or cognitive processing during wakefulness. We investigated
numerically whether an asynchronous network state similarto that described in the main text, is also
possible under time-varying inputs. Since the tracking of random fluctuations by the network is very
fast, we expect that if the mean external input does not change too quickly, tracking of fluctuations will
still take placeon topof the time-varing signal, resulting in an active decorrelation of synaptic currents
even in these conditions.

We tested this hypothesis by modulating the firing rate of theexternal inputs to the recurrent network.
We used a periodic (filtered white noise, period 1 s = 100 neuronal time-constants) stimulusmX(t) (equa-
tion (18)) which repeated 1000 times (Fig. S5A shows 10 repetitions). This time-varying input induced
global temporal modulations in the activity of the whole network (Fig. S5A, C) of a significantly larger
magnitude that the random fluctuations present when the input is stationary (Fig. S5B). Because the
modulation was periodic, we could compute the instantaneous average activity of each neuron across
repetitions (Fig. S5C). As expected, disregarding the global activity modulation and simply calculating
correlations with respect to the mean activity of each cell across the whole simulation leads to a distri-
bution of firing correlationsr biased towards positive values (Fig. S5D, red). However, ifcovariations
in activity are measured with respect to the time-varying average activity of each neuron (Fig. S5C), the
positive bias in the correlation histogram is removed (Fig.S5D, orange), resulting in a distribution ofr
very similar to that obtained under stationary conditions (Fig. S5D, blue). This is consistent with our
finding that the positive bias in the distribution of correlations during the inactivated state (Fig. 4D main
text) is removed when one restricts the analysis to activityduring Up-states (Fig. 4D-F).
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Histogram of firing correlationsr for the different stimulation conditions. Correlations displayed in the blue and

red histograms represent covariations in the activity of pairs of neurons with respect to their average activity across

the whole simulation (1000 s) for networks driven by stationary and time-varying inputs respectively. Conditioning

on the instantaneous average activity of each cell (color lines in (C)) removes the positive bias of the distribution of

correlations, revealing asynchronous activity under a non-stationary situation (orange). Inset: coefficient of varia-

tion (CV = σr/r̄) of the three histograms. The histogram of correlations is wide both under stationary conditions

and time-varing conditions as long as correlations are conditional on the time-varying signal.

Thus, large global activity modulations are compatible with the mechanism for active decorrelation
of synaptic inputs described in the main text. This is not a trivial result. In fact, in this network, if the
external inputs change sufficiently fast, they interfere with the tracking or random fluctuations, resulting
in a positive bias in the distribution of correlations even after conditioning on the average instantaneous
activity of the neurons (data not shown; but see Fig. S8).
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3.5 Robustness of asynchronous activity in the spiking network

In section 3.3 we showed that asynchronous activity occurred robustly for a large range of parameters in
the binary network. We now show that the key characteristicsof asynchronous activity, namely weak total
current correlations when compared to the temporal correlations of the individual current components
and a wide distribution of spiking correlations, are also robust features of spiking networks of integrate-
and-fire neurons.

We start by providing a detailed characterization of the activity of the spiking network shown in
Fig. 3 of the main text. Neurons in the network fire tonically and irregularly, with the membrane
potential hovering below threshold and with large fluctuations occasionally driving spikes (Fig. S6A).
The distribution of spike count correlationsr is wide (σr ≫ r̄) for all three cell pair types, but especially
for II pairs (Fig. S6B). Both the positive and the negative tails ofthe r distribution are not present in
the jittered data and are therefore generated by the networkdynamics, rather than reflecting estimation
errors due to the finite length of the simulations. We investigated the dependency of the meanr̄ and
width σr of the correlation histogram on the count windowT (Fig. S6C-D). AsT goes to zero, all
spiking correlations trivially vanish (50). Very short-time correlations are on average all positiveand
increase withT up to a few ms, at which point they start decreasing, reachinga low asymptotic value at
T ≃ 20 ms which does not change asT is increased further (Fig. S6C). Additionally, the width ofthe
correlation histogram for all three cell-pair types relative to the jittered surrogates, has a maximum as a
function ofT (Fig. S6D). Both of these results can be understood as follows. The spike count covariance
with count windowT is related to the area under the cross-correlogram (CCG) of the corresponding
spike trains in the interval(−T, T ) (see e.g. (51)). For two finite, independent spike trains, the spike
count covariance would therefore reflect the integration ofstatistical fluctuations, and so have zero mean
and a variance that grows withT . For two correlated spike trains whose CCG has widthτCCG, the spike
count covariance whenT < τCCG is related to the shape of the CCG. AsT becomes much larger than
τCCG, the value of the covariance does not change on average (Fig.S6C), but its estimation becomes
less accuarate as a larger fraction of the covariance reflects integration of ‘noise’ (28). Because in this
networkτCCG ≃ 20 ms (Fig. S6E), asT ≫ 20 ms,r̄ reaches a plateau (Fig. 6C) andσr approaches the
width of the histogram of jittered surrogates (Fig. S6D).

We next characterized in more detail the cancellation between the synaptic currrent correlations
shown in Fig. 3C-D of the main text. Fig. S6F shows the CCGs between the different current compo-
nents. The instantaneous correlation of the total current (i.e. the peak of the CCG) is smaller than that
of the components. Although this effect is qualitativelly similar to the cancellation of the correlations of
the components of the membrane potential (Fig. 3C), the total current is comparatively more correlated
than the membrane potential at rest (compare peaks of the black CCGs in Fig. 3C and Fig. S6F). In
order to understand the relationship between synaptic current and membrane potential correlations, we
computed the correlation between the currents filtered using a simple causal exponential filter of time
constantτf (52). While the correlation between the filtered current components remains large for all
values ofτf , the filtered total currents become less and less correlatedasτf increases (Fig. S6G) due to
the fact that the area under the negative side lobes in the CCGof the total current is almost the same as
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Fig. S6: Asynchronous activity in a recurrent network of spiking neurons. (A) Spike rastergrams of 500
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taneous activity of each population (middle, bin size 4 ms) and example voltage traces of twoE (first and second)

and twoI (third and fourth) neurons (bottom).(B) Histograms of the spike count correlation coefficientsr of

the different types of cell pairs and the jittered spike trains (count windowT = 20 ms). Jittered surrogates were

constructed by adding a uniform random variable in [-0.5, 0.5] s to each spike.(C) Average spiking correlation̄r

vs. count windowT . (D) Standard deviationσr of the data normalized by that of the jittered surrogates vs.T . (E)
Average spike cross-correlograms of each pair type (from a random subset of 1000E and 1000I cells) computed

by subtracting one from equation (9).(F) Average current CCG for different current component pairs.(G) Average
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correlation coefficient of the filtered currents vs. the filter time constant (see text). All data comes from a single

network simulated for 5000 s. All parameters as in Fig. 3 of the main text (values given in section 1.1.2).

the area under the central peak, so that the total area is almost zero (53). Thus, similarly to the binary
network (Fig. 2F stepsii and iii ), the full cancelation of correlations in the spiking network seems to
occur in two steps: first, when the different components are summed together and second, when the total
current is integrated by the cell’s membrane potential.
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(C) the mean̄r and std. dev.σr of the spike count correlations.Middle column: Effect of changing the probability

of connectionp in the network on(D) the correlation of the current components (white squares represent the

correlation of the filtered currents,τf = 20 ms),(E) the population-averaged spiking CCGs ofEE pairs (computed

as in Fig. S6E), with lighter color corresponding to lowerp, and(F) r̄. Right column: Effect of decreasing the

excitatory synaptic decay time constantτE (both recurrent and external).(G, H) Same as (D, E).(I) Averaged

correlationr̄ betweenEE pairs as a function of the spike count window. In (H, I) lighter colors correspond to
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longerτE ’s. All data are averages over 5-10 networks simulated for 200 s. All fixed parameters as in Fig. 3 except

for νX = 8 spks/s (middle column). Count windowT = 20 ms in (C, F).

The effect of changing several network parameters on the behavior of the network just described
is shown in Fig. S7. Increasing the external drive to the network (Fig. S7, left column) increases
the firing rate of the recurrent neurons in an approximately linear fashion (Fig. S7A), as is typical in
balanced networks (2,54). Overall, population-averaged synaptic currents becomeless correlated as the
firing rates increase (Fig. S7B). Higher firing rates lead to wider distribution of spiking correlations
with average correlations qualitatively unaffected (Fig.S7C; see also Fig. S8D). Next we examined the
effect of changing the probability of connectionp (Fig. S7, middle column). The correlation between
the current components and between the total currents (albeit more slowly) grows withp (Fig. S7D).
However, the negative side-lobes of the total current CCG grow in parallel (Fig. S7E), in such a way that
the instantaneous correlation of the filtered total synaptic current (filter time-constantτf = 20 ms) (Fig.
S7D, white squares) and the population-averaged spike count correlationr̄ (Fig. S7F) do not change with
p. This is further evidence that̄r is set dynamically and is not determined by the level of shared input
in the network. Finally, we shortened the synaptic decay time constantτE of the excitatory synapses
(Fig. S7, right column). As expected, when excitation becomes progressively faster than inhibition
(in Fig. S7G-I,τI = 5 ms) the negative feedback is not fast enough and the network becomes more
synchronized. Instantaneous current correlations, including the correlations between the total synaptic
currents, increase (Fig S7G). Average spike train CCGs alsogrow in magnitude and acquire a more
oscillatory character (Fig. S7H). Nevertheless, this increase in oscillatory synchrony is gradual (no sharp
transitions in the qualitative behavior of the network wereobserved) and has a relatively mild impact on
the population-averaged spike count correlations (Fig. S7I).

3.6 Effect of time-varying external inputs on correlationsin the spiking network

In this section we study the behavior of correlations under non-stationary conditions in the network of
conductance-based integrate and fire neurons. We investigated this issue by having the instantaneous
firing rate of the external neuronsνX oscillate sinusoidally (νX(t) = 15 + 10 sin(2πft) spks/s), and by
measuring how correlations in the network depended on the frequency of the oscillationf .

As expected in a balanced network (2), the mean rate of theE andI populations follows accurately
the temporal modulation of the external input (Fig. S8A) (55). Spike train CCGs were corrected for the
modulation of the mean rate using a shift predictor: we obtained the CCG for each pair of spike trains
following equation (9) and then subtracted a CCG obtained using the same formula but shifting the two
trains by a random integer number of oscillation periods (28). The peak of the population-averaged CCG
betweenEE pairs remained constant forf < 10 Hz and then it increased by a factor of∼ 3 between
10 and 100 Hz (Fig. S8B). Spike count correlations increasedcorrespondingly, especially for very short
count windows, although overall they remained very small onaverage (Fig. S8C). Thus, although as
expected tracking becomes less effective when the externalinputs change rapidly, this does not have a
strong impact on̄r. This does not mean, however, that the correlation structure of the network is unaffec-
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Fig. S8: Asynchronous activity in the spiking network in thepresence of sinusoidal time-varying inputs.The

external rate was varied sinusoidally over a range of frequenciesf from 1 to 100 Hz.(A) Instantaneous average

firing rates of theE andI populations as a function of time for a stimulus withf = 12.5 Hz (55). (B) Population-

averaged shift corrected CCG ofEE pairs (see text). The CCG peak increases withf . (C) Population-averaged

spike count correlation̄r for EE pairs as a function off for different spike count windows.(D) Instantaneous

meanr̄(t) and std. dev.σr(t) of EE pairs as a function of time (f = 12.5 Hz, count windowT = 20 ms). The

width σr(t) follows the mean firing rate (see also Fig. S7C). Dashed line represents the correlation std. dev. for

the shuffled data (see text). Data shown are averages over sets of 200E and 200I neurons chosen from each of

four networks simulated for 1000 s. All parameters as in Fig.3.

ted by the input. To show this, we computed the population-averaged instantaneous spike count corre-
lation r̄(t) and the instantaneous std. dev.σr(t) as a function of time during an oscillation period using
sliding count windows ofT = 20 ms (Fig. S8D, sliding step 5 ms). We also computedσr(t) for the
shuffled data set obtained by shifting the spike trains as described above. The std. dev.σr(t) from the
data was larger than that of the shuffled data, and was modulated in time, to a much larger extent than
r̄(t) (at the scale of the plot,̄r(t) appears constant). Thus, correlations increase transiently in magnitude
during epochs of high rate, but positive and negative correlations increase similarly with rate, resulting
in a very weak modulation of̄r(t). This qualitative behavior was observed for the whole rangeof fre-
quencies studied. The small values ofr̄(t) obtained are not a consequence of the method employed to
measure spiking correlations. Feed-forward networks of integrate-and-fire cells firing at similar rates
can exhibit correlation coefficientsr in the range 0.1-0.2 (see, e.g., Fig. 1E) which can be largelyand
quickly modulated by time-varying inputs (56). We therefore conclude that asynchronous activity is a
robust feature of the spiking network even in the presence oftime-varying inputs.
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3.7 Time-scale dependence of correlations in the rat cortexin vivo

To verify that our conclusions regarding the distributionsof correlations from thein vivo population
recordings were not dependent on any specific counting window T , we repeated the analyses using
different values ofT . Correlation coefficients were calculated as described in Section 1.3.4, keeping the
jitter intervalJ fixed to four times the counting window, i.e.,J = 4T .
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Fig. S9: Distribution of correlations at different time-scales. Empty and filled dots correspond to the average

(plus minus standard deviation) across recording sessionsof the mean correlation̄r and correlation histogram

width σr respectively. The histogram is wide across a large range of counting windows. Notice the logarithmic

scale in the x-axis.

Fig. S9 shows the average across experiments of the meanr̄ (empty circles) and std. dev.σr (filled
circles) of distributions of correlations with time-scaleT during the ACT state, forT ranging from 10 ms
to 500 ms. Considering correlations at different time-scalesT , does not lead to qualitative differences
with the results presented in Fig. 4 of the main text (in whichT = 50 ms): first, the mean correlation̄r
was very small (less than 0.02) for all counting windows up toT = 500 ms, although it shows a slight
increasing tendency. Second, the coefficient of variation of the distribution is also large for all windows
on this range, showing that the distribution of correlations being wide is not crucially dependent on the
time-scale at which correlations are measured.

As expected, the width of the histogram goes to zero with decreasingT , since spike count correlations
become linear in the counting window asT → 0 (50). At the other extreme, correlations tend to become
more positive on time-scales of the order of seconds. However, such slow covariations in activity are
expected to reflect processes other than synaptic transmission and integration (which are in general one
to two orders of magnitude faster).
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3.8 Examples of CCGs of individual cell pairs in the rat cortex in vivo

To investigate the temporal structure of pairwise correlations on fine time-scales we computed individual
cross-correlograms (CCGs, equation 9) from the experimentillustrated in Fig. 4A-B of the main text,
during the ACT period (Fig. S10).
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Fig. S10: Examples of individual CCGs. One hundred raw CCGs (equation 9, bin sizedt= 10 ms) from the

experiment shown in Fig. 4A-B of the main text. CCGs where chosen to span the whole range of correlations

observed for this experiment. Top, distribution of correlationsr for this experiment (identical to the one in Fig.

4B; count windowT = 50 ms). The color scale forr is shown horizontally. Bottom, array of individual CCGs

arranged according to ther value of each pair, which is also shown as the background color (see color bar on top).

The gray dashed lines mark the value 1 which signals no correlation when the trains are stationary. The red lines

shows the average CCG across 1000 jittered surrogates (jitter intervalJ= 200 ms). Only pairs with geometric mean
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firing rate
√
νiνj > 1 spikes/s were considered. The y-axis of each plot goes from zero to the maximum between

two and 1.1 times the CCG peak value. Asterisks show some examples with clear differences between the average

of the jittered CCGs and one, i.e., pairs significantly correlated on slow time-scales.

Fig. S10 shows cross-correlograms for 100 pairs, with correlation coefficients equally spaced in
the intervalr = (−0.18, 0.2), which almost spanned the whole range of values ofr obtained in this
experiment; specifically, we divided this interval in one hundred equi-spaced correlation values, and
selected the pair with the closestr to each of those values. In order to avoid extremely sparse CCGs, we
only chose pairsij in which the geometric mean of the firing rates,

√
νiνj , was larger than 1 spike/s. We

compared each raw CCG (white) with(i) a baseline value of one, expected if the two spike trains were
stationary and independent (dashed gray lines) and(ii) with the baseline value expected if the two trains
were only independent on time-scales≪ 200 ms (red lines, obtained as the average CCG across jittered
surrogates for each pair of spike trains; see sections 1.3.4and 1.3.6 for details). Because the method
we used to computer corrects for correlations produced by slow co-moduations of the rates, the figure
shows that the sorting of pairs byrmatches the comparison of each CCG with the baseline obtained from
the jittered surrogate trains (asterisks show a few examples where the two baselines are clearly different,
i.e., pairs correlated on slow time-scales).

As expected, pairs with positiver showed clear peaks in their CCGs and pairs with negativer showed
clear troughs. Pairs withr ≃ 0 showed mostly flat CCGs although a few showed a combination ofsmall
peaks and troughs. Note that the CCGs of the pairs with the most negativer values have a symmetric
trough around zero. Symmetric CCGs have been usually interpreted as being the result of anatomically
shared input (57–59). However, both excitatory and inhibitory shared input canonly inducepositive
correlations (Fig. 1A of the main text), i.e., CCG peaks. Thus, all of the symmetric troughs and many
of the symmetric peaks are likely to be caused by specific combinations of positively and negatively
correlated inputs, rather than anatomically shared inputs.

3.9 Distance dependence of correlations in the rat cortexin vivo

In order to investigate whether the distance between two cells in a pair has some influence over the
measured value of their spiking correlation, we recomputedcorrelation histograms with pairs recorded
a given number of shanks away from each other (see section 1.3.7) during periods of cortical activation.
Since our silicon electrodes consist of 8 linearly arrangedshanks separated by 200µm each, the whole
electrode array spans a considerable distance across the cortex (1.4 mm; all penetrations were normal
to the cortex, i.e. shanks were perpendicular to the cortical layers). As shown in Fig. S11, onlyσr,
but not r̄, decreased with the distance (σr slope= - 0.017/mm, p< 0.001; r̄ slope= - 0.002/mm, p
= 0.35, p-values with respect to a null hypothesis of no distance dependence, see Section 1.3.7). Thus,
distant pairs tended to be more weakly correlated (for both correlation signs), but there were still similar
numbers of positively and negatively correlated pairs at all distances. The distribution of correlations is
wider (relative to its mean) for neurons recorded in the sameshank.
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